МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования и науки Республики Татарстан

МУ "Управление образования Кукморского муниципального района"

МБОУ "Гимназия №1 имени Ч.Т.Айтматова г. Кукмор".

РАБОЧАЯ ПРОГРАММА

элективного курса «Молекулярные основы жизнедеятельности клеток»

для 10 класса (естественно- научного профиля) на 2024-2025 учебный год

Принято на заседании педагогического совета Протокол №1 от 26.08.2024

Действителен с 16.01.2024 до 16.04.2025

Составитель: Димиева Зульфия Хурматулловна, учитель биологии

Кукмор-2024.

Пояснительная записка.

Рабочая программа элективного курса «Молекулярные основы жизнедеятельности клетки» предназначен для учащихся 10 класса и расчитан на 34 часа. Основная концепция курса заключается в следующем В программе рассматриваются вопросы строения и функций биополимеров и молекулярные механизмы таких основополагающих процессов, как хранение и удвоение генетической информации, биосинтез белка, регуляция работы генов, избирательная локализация синтезированных белков в клеточных органеллах. Особые акценты делаются на приспособительном характере этих процессов и их роли в эволюции, а также на использовании методов и результатов молекулярной биологии в других биологических дисциплинах прежде всего в систематике, экологии и медицине.

Актуальность. Элективный курс «Молекулярные основы жизнедеятельности клетки» предназначен для учащихся 10 классов и носит предметно-ориентированный характер, а также определяется интересом старшеклассников к углублению знаний материала, изучаемого в школьном курсе для понимания основных положений биологии во всем многообразии биологических явлений и широком диапазоне уровней биологических процессов. В курсе особое внимание уделяется физико-химическим механизмам взаимодействия макромолекул, лежащим в основе процессов формирования клеточных структур и функционирования клетки. Рассматривается действие различных факторов, влияющих на эти взаимодействия, на процессы жизнедеятельности клетки и целого организма, в частности на развитие некоторых заболеваний.

Курс затрагивает многие вопросы, находящиеся на стыке биологии с другими науками, прежде всего с химией и физикой. Предполагается что школьники, изучающие курс, уже знакомы с основами общей и органической химии, генетики и клеточной теории.

Комплексный подход при изучении живых организмов на разных уровнях их организации. Как известно, вопросы строения клеток, рассматриваемые в курсе «Общей биологии» старших классов, сильно оторваны по времени от курсов зоологии ,анатомии и физиологии животных и человека, читаемых в 7-9 классах школы. Тем самым разрывается формирование целостного представления о единстве организации всех живых существ на основе их клеточного строения. Важно ещё раз показать, что все ткани и органы животных построены на единой клеточной основе, имеющей общие фундаментальные признаки и особенности.

Сравнительно-эволюционная направленность курса. При рассмотрении вопросов строения клетки, тканей и органов многоклеточных животных основное внимание уделяется формирование у учащихся эволюционного мышления при изучении живой природы во всех ее проявлениях.

Использование самых современных молекулярно-биологических данных о строении и функционировании клеточных и тканевых систем животных. Это положение подразумевает хорошее влияние учениками основами общей биологии, генетики, теории эволюции, химии и других биологических науке.

Экологическая направленность курса. Важно сформировать твёрдое убеждении у ребят что неблагоприятные факторы, включая вредные привычки, стрессы серьёзно сказываются на состояние организма.

Большой объём практических и семинарских занятии .Эта часть курса предполагает широкое использование иллюстративного материала непосредственно на занятиях, а также изучение микроскопических препаратов тканей и органов. Необходимо шире использовать

возможности компьютерных классов, задействовать их на уроках биологии подключаясь к многочисленным сайтам по биологии клетки, анатомии и физиологии, имеющихся в настоящие время в Интернете.

Проверка оценка качества знании. Текущие знания проверяются с помощью тестовых контрольных работ после каждого раздела курса и традиционных опросов в течение изучения темы.

Новизна программы состоит в том, что она направлена не столько на углубление теоретических знаний, а в большей степени на развитие практических навыков и умений. В связи с этим основной метод обучения – деятельностный.

Цель курса

Формирование у учащихся понимания физико-химических основ важнейших процессов жизнедеятельности организмов, в первую очередь явлении наследственности и реализации генетической информации.

Задачи:

- -углубить и расширить знания учащихся о строении и функциях важнейших биополимеров, механизмах их биосинтеза, роли слабых межмолекулярных и внутримолекулярных взаимодействий в определении структуры живых организмов и протекания важнейших биологических процессов.
- -ознакомить учащихся с возможностями применение методов молекулярной биологии в практической деятельности человека, прежде всего в медицине.

Программа элективного курса рассчитан на 34 часа в год, 1 час в неделю.

Требования к уровню подготовки учащихся

По окончании изучения курса учащиеся должны знать и уметь

Учащиеся должны знать:

- -принципиальное устройство светового и электронного микроскопа.
- -положения клеточной теории .
- -особенности прокариотической и эукариотической клеток.
- -сходство и различия животной и растительной клеток.
- -основные компоненты и органоиды клеток.
- -основные этапы синтеза белка в эукариотической клетке- транскрипция и трансляция.
- -особенности ядерного аппарата и репродукции клеток.
- -строение вирусов и их типы, жизненный цикл вирусов, современное состояние проблемы борьбы с вирусными инфекциями .

- -реакцию клеток на воздействии вредных факторов среды.
- -определение и классификацию тканей, происхождение тканей и в эволюции многоклеточных .
- -строение основных типов клеток и тканей многоклеточных животных.
- -иметь представление о молекулярной- биологических основах ряда важнейших процессов в клетках и тканей нашего организма.

Учащиеся должны уметь:

- -работать со световым микроскопом и микроскопическими препаратами.
- -уметь» читать « электронно- микроскопические фотографии и схемы клеток и её органоидов.
- -изготовлять простейшие препараты для микроскопического исследования.
- -определять тип тканей по препарату или фотографии
- -уметь выявлять причинно- следственные связи между биологическими процессами ,происходящими на разных уровнях организации живых организмов.
- -иллюстрировать ответ простейшими схемами и рисунками клеточных структур.
- -работать с современной биологической и медицинской литературой и Интернетом
- -составлять краткие рефераты и доклады по интересующим темам, уметь представлять их на школьных конференциях и олимпиадах.
- -применять знания физических и химических законов для объяснения биологических процессов.

Ожидаемые результаты

После изучение элективного курса по биологии "Молекулярные основы и жизнедеятельности клетки " у учащихся должна формироваться понимания физика - химических основ жизнедеятельности организмов. Учащиеся глубже должны знать строении и функции биополимеров, биосинтез органических веществ, взаимодействие живых организмов а также применение методов молекулярной биологии в медицине. У учащихся должна формироваться практические навыки.

Пройдя данный курс, учащиеся приобретут следующие умения и навыки:

- 1.Умение учащихся применение и работы со световым микроскопом, получение более глубоких знании по молекулярному строению и основ жизнедеятельности клетки .
- 2. Применение полученных навыков и знаний для дальнейшего изучения соответствующих дисциплин в высших и специальных учебных заведении.
 - 3. Обучение учащихся к самостоятельной работе с применением дополнительной литературы и новых компьютерных технологии

Содержание курса.

Введение в биологию клетки (3 часа)

Живая клетка как сложный комплекс химических веществ

Низкомолекулярные вещества- источник энергии и мономеры для построения полимеров. Высокомолекулярные вещества(макромолекулы), их многообразие. Многообразие полимеров(теоретические аспекты). Взаимодействие молекул как основа образования и функционирования компонентов живых клеток. Введение в биологию клетки Биохимическая дисциплина

Общий план строения клеток живых организмов (3 часа)

Безьядерные, ядерные клетки. Сходство и различия. Животная и растительная клетка. Ядерные организмы. Теории происхождения ядерных клетки. Надмембранные, мембранные комплексы. Регуляторная роль мембраныПроблема синтезов нерегулярных полимеров. Матричный синтез. Комлементарность оснований — основа матричного синтеза нуклеиновых кислот. Биосинтез ДНК(репликация)- основа процессов роста и размножения живых организмов. ДНК-полимеразы , их свойства. Проблема расплетения двойной спирали . Хеликазы и топоизомеразы. Начало синтеза, РНК-затаравки. Проблема синтеза противоположно направленных цепей , прерывистый синтез. Завершение синтеза: удаление затравок и сшивание фрагментов

Обмен Нуклеиновых кислот (5 часов).

Биосинтез нуклеотидов и нуклеотидных коферментов. Биохимические вопросы медицины. Облигаты паразиты.

Элементы патологии клетки. Реакция клеток на взаимодействие вредных факторов среды (алкоголь, наркотики, курение, токсичные вещества, тяжелые металлы и.т.д) Обратимые и необратимые повреждения клеток. Клеточные и молекулярные механизмы повреждающего действия различных факторов на структуры и функцию клеток.

Ферменты (6 часов)

Характерные особенности биохимических процессов .

Ферменты: структура и свойства, строение активных центров. Кинетика ферментативного катализа. Классификация кофакторов. Регуляция ферментного аппарата клетки.

Физико-химические основы взаимодействия молекул. Физико-химические основы взаимодействия молекул... Анаэробное превращение углеводов. Метаболизм нейтральных липидов, фосфолипидов, холестерола. Внутриклеточное превращение белков. Гидролиз белков желудочно-кишечном тракте. Всасывание продуктов гидролиза.

Физико-химические основы взаимодействия молекул . .(7 часов)

Анаэробное превращение Аэробное превращение углеводов углеводов Метаболизм нейтральных липидов, фосфолипидов, холестерола Внутриклеточное превращение белков Гидролиз белков желудочно-кишечном тракте Всасывание продуктов гидролиза Трансляция-период информации с языка нуклеотидов на язык аминокислот. Проблема кодирования двадцати аминокислот четырьмя основаниями. Генетический код, его свойства. Кодоны. Расшифровка генетического кода. Кодовая таблица. Универсальность генетического кодадоказательство единого происхождения всех живых организмов и основа для пересадки генов.

Молекулярные основы раздражимости. (10 часов)

Раздражимость её формы и биологическое значение Раздражители Состояние возбуждения Ранние представления о раздражимости Денатурационная теория возбуждения Современная представления о рецепции возбуждения Молекулярные основы двигательных реакции

Молекулярные основы двигательных реакции Различные виды движения Энергетика мышечного сокращения Сократительные и регуляторные белки мышц Итоговое занятие Обобщение курса

Календарно-тематическое планирование.

No	Тема курса	Дата проведения		Примечание
ypo		планируемая	фактическая	_
ка			_	
	Введение в биологи	ию клетки		
1	Введение в биологию клетки	04.09.2024		
2	Биохимическая дисциплина	11.09.2024		
3	Теория происхождение эукариотических клеток	18.09.2024		
	Общий план строения клеток з	живых организмов		
4	Современная модель строения клеточной мембраны.	25.09.2024		
5	Надмембранные, мембранные комплексы.	02.10.2024		
6	Регуляторная роль мембраны	09.10.2024		
	Обмен Нуклеиновых	к кислот		
7	Обмен нуклеиновых кислот	16.10.2024		
8	Биосинтез нуклеотидов и нуклеотидных коферментов	30.10.2024		
9	Биохимические вопросы медицины	06.11.2024		
10	Облигаты паразиты	13.11.2024		
11	Элементы патологии клетки	20.11.2024		
	Ферменты			
12	Характерные особенности биохимических процессов	27.11.2024		
13	Ферменты: структура и свойства, строение активных центров	04.12.2024		
14	Кинетика ферментативного катализа	11.12.2024		
15	Классификация кофакторов	18.12.2024		
16	Регуляция ферментного аппарата клетки	25.12.2024		
17	Принципы классификации и номенклатура ферментов	15.01.2025		
	Физико-химические основы	взаимодействия молеку	П	
18	Физико-химические основы взаимодействия молекул	22.01.2025		
19	Анаэробное превращение углеводов	29.01.2025		
20	Аэробное превращение углеводов	05.02.2025		

21	Метаболизм нейтральных липидов, фосфолипидов, холестерола	12.02.2025	
22	Внутриклеточное превращение белков	19.02.2025	
23	Гидролиз белков желудочно-кишечном тракте	26.02.2025	
24	Всасывание продуктов гидролиза	05.03.2025	
	Молекулярные основы ра	здражимости.	
25	Раздражимость её формы и биологическое значение	12.03.2025	
26	Раздражители	19.03.2025	
27	Состояние возбуждения	02.04.2025	
28	Ранние представления о раздражимости	09.04.2025	
29	Денатурационная теория возбуждения	16.04.2025	
30	Современная представления о рецепции возбуждения	23.04.2025	
	Молекулярные основы двига	тельных реакции	
31	Различные виды движения	30.04.2025	
32	Энергетика мышечного сокращения	07.05.2025	
33	Сократительные и регуляторные белки мышц	14.05.2025	
34	Обобщение курса	21.05.2025	
Всего	о: 34 часов		

Использованная литература.

Контрольно-измерительные материалы. Биология, 11 класс/ Сост. Н.А.Богданов.-М:ВАКО,2014.-80с.-(Контрольно-измерительные материалы). Кириленко А.А. Биология. Эволюция органического мира. Подготовка к ЕГЭ: теория и тренировочные задания: учебно-методическое пособие/-Ростов н/Д: Легион, 2013.-224с

Кириленко А.А. Молекулярная биология. Тетрадь для подготовки к ЕГЭ. 10-11 классы. Все типы задач/ А.А.Кириленко.-Ростов н/Д:Легион, 2015.-71, /2/c.-(Готовимся к ЕГЭ)

Кириленко А.А. Биология. Подготовка к ЕГЭ -2017. 30 тренировочных вариантов по демоверсии 2017 года: учебно-методическое пособие/А.А.Кириленко,С.И.Колесников,Е.В.Даденко.-Ростов н/Д:Легион,2016.-592с.-(ЕГЭ) 592с.-(ЕГЭ)

Биология. Справочник в таблицах. ООО «Издательство «АЙРИС-пресс»,2015

Электронные ресурсы:

http://mirror.vsibiri.info/interneturok.ru/ru/school/biology/10-klass.htm http://lotoskay.ucoz.ru/tests/5

Лист согласования к документу № 13 от 31.08.2024 Инициатор согласования: Касимов В.Г. Директор Согласование инициировано: 30.09.2024 10:43

Лист согласования: последовательное						
N°	ФИО	ИО Срок согласования Результат согласования		Замечания		
1	Касимов В.Г.		□Подписано 30.09.2024 - 10:44	-		